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V A R I A T I O N A L  M E T H O D  OF D E T E R M I N I N G  T H E  H Y D R O D Y N A M I C  

P A R A M E T E R S  IN C O N V E C T I V E  H E A T - T R A N S F E R  P R O B L E M S  

FOR SEPARATION FLOWS IN CHANNELS 

G. F .  M a l i k o v  UDC 532.542:536.242 

A method is given for  computing viscous fluid flows in a channel by using a variational fo rmula -  
tion. 

The application of i teration methods [1-6] to compute the convective heat t r ans fe r  in a separat ion flow 
in a channel requires  substantial expenditures of machine time, which is associated mainly with the slow 
convergence of the i teration p rocess  for  the hydrodynamic equations. 

Utilization of direct  methods, including va r i a t iona l  results  in a significant reduction in the computation 
time, as a rule, although it also complicates the algori thm for  the solution. 

A certain hybrid scheme is proposed in this paper  that combines f ini te-difference and var ia t ional -d i f fer -  
ence computation schemes,  which turn out to be relat ively simply in real izat ion on an electronic computer  
while at the same time sufficiently economical  in the sense of the computation t ime. 

The scheme is developed in application to specific cases  of the flow in cylindrical  or plane channels be-  
hind a sudden expansion and is based on an explicit method for  solving all equation in the longitudinal (cruising) 
coordinate x and an implicit method in the t r ansve r se  coordinate y. 

A feature of the method is that the solution is sought in the form u = u  + 6u; v =~  + 6v, where ~ is the f i rs t  
approximation obtained f rom (1) by the factorizat ion method, ~ is determined f rom the continuity equation (3), 
6u, 5v a re  the refining correc t ions  obtained from the condition of minimum work of the hydrodynamic forces  
on a finite set  of closed contours (elosedness of the contour permi ts  elimination of the p re s su re  f rom a number  
of unknowns). 

The method mentioned permits  obtaining a "good" solution more  rapidly for the problem under cons idera-  
tion than in [1-5], say, because of the abrupt  reduction in the number  of i terat ions typical for  variational meth-  
ods. At the same time, such a combined approach is s impler ,  and (in this case) more  economical  than the ap-  
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Fig. i. Computational scheme (the dashes 
denote the contour of integration). 

plication of the method of finite elements in "pure form" since it permits reduction of the number of unknown 
parameters (in the particular case elements) to a minimum. This latter becomes possible because the shape 

of the velocity profile in the elements is determined first by a finite-difference method. 

Let us examine the crux of the method in an example of stationary flow in a symmetric plane channel 
behind an obstacle (for the case with constant density and variable viscosity). 

We represent the equations of motion and continuity in the form 

w h e r e  

F.~ + 1 0 p  _ o ,  (1) 
p Ox 

Fy + 1 Op _ 0 ,  (2) 
9 Og 

(Ou/Ox) + (Or~@) = O, (3) 

OU Ott OTxx  (?Zxy . 
F~ - - + v  

= u Ox Og Ox Oy 

av Ov a ~  o+cyy 
F y = u  + v  - -  ; 

Ox Og Ox Oyj 

" ~  = 2p/p (Ou/Ox); ~yv = 2p/p (Or~Or); 

%y = p/p (Ou/@ + OviOx); p = p~ + p~. 

Le t  us  a s s u m e  the  f o l l o w i n g  b o u n d a r y  c o n d i t i o n s  

x = O  p = p . ( g ) ;  u = u.(g);  v = O ;  v = O  u = v = O ;  

y = R (Ou/Og)n = O; vn = O; 

at the  ou tpu t  O u / a x  = a v / a x  = 0. 

In  the  f i r s t  i t e r a t i o n  the  f o l l o w i n g  i n i t i a l  c o n d i t i o n s  a r e  s a t i s f i e d  

u (x + Ax, y) = u (x - -  5x, V); v (x + Ax, y) = v (x - -  Ax, V) 

( s u c c e s s i v e l y ,  a s  g o i n g  f r o m  one s e c t i o n  x to a n o t h e r ) .  

L e t  us  n o w  c a l c u l a t e  the  w o r k  ~ oI the  h y d r o d y n a m i c  f o r c e s  F ( i n e r t i a ,  v i s c o s i t y ,  and  p r e s s u r e )  o v e r  
the  c l o s e d  c o n t o u r  a ,  b, c, d ( d a s h es  in  F i g .  1, c l o c k w i s e  i n t e g r a t i o n ) :  

(4) 

abed ab bc 

+ f + po)/o + J" G @  + (po - -  
cd da 

(5) 
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A s s u m i n g  the coeff ic ients  u and v of the convec t ive  t e r m s  to be cons tan t s  on the sec t ion  ab = Ax, and 
taking account  of (4), we obtain (af ter  cutt ing out the t e r m s  containing the p r e s s u r e )  

Y 

�9 = u (u - -  u~) z .  + v (Ou/@) Ax - -  z .  f u (v - -  v3 dy - -  0.5v 2 - -  ~ + ~ , ,  - -  (0"%/@) Ax + (0"%/09)0 zXx + 
Ax ~ 

+• / (6) 
Ax o ,~a 

where  the las t  in tegra l  is known f r o m  computa t ions  in the p r eced ing  s tep,  the s u b s c r i p t  s denotes  u t i l iza t ion of 
u p s t r e a m  d i f f e rences  in the convect ive  t e r m s  (in the coord ina te  x), Zu = s ign u, u s = u ( x -  Axz u) (we use c e n t r a l  
d i f f e rences  in the coord ina te  y). 

Here  and hencefor th ,  the quant i t ies  wi th  s u b s c r i p t  1, 2, 0 r e f e r  to  the sec t ions  x = xl, x = x 2, y = 0, r e -  
spec t ive ly ,  and r e s t  to the sec t ion  x = x. 

Now, let  us de t e rmine  the funct ional  of x min imizab l e  in this  sec t ion:  

R 

Y = ~ 02dy. (7) 
o 

The e x p r e s s i o n  (7) is the sum of s q u a r e s  of the w o r k  of the h y d r o d y n a m i c  f o r c e s  o n  the se t  of r e c t a n g u l a r  
con tours  (of the type a ,  b, c, d) with d imens ions  Ax, y.  Evident ly  J >_ 0. We now find a solut ion fo r  u and v 
such  that  J - - m i n u n d e r t h e  addit ional  condi t ion v R = 0. To do this ,  we pa r t i t ion  the  t r a n s v e r s e  sec t ion  of the 
channel  into one -d imens iona l  e l emen t s  de l inea ted  by the con t ro l  nodes  with the n u m b e r s  i = 1, 2 . . . . .  I and we 
r e p r e s e n t  the d e s i r e d  solut ion in the f o r m  

I 

u = u +  @ = u + ~  [~,,~ l-li, 
i ~ l  

I 

v = v + 6 v  = v + ~  L,~I-I. 

(s) 

where  fu,i  -= fu,i(Y), fv, i  = fv,i(Y) a re  c e r t a i n  bas i s  funct ions ,  E is the init ial  app rox ima t ion  obtained by solving 
(1) by the f ac to r i za t i on  method,  and II i is a se t  of sma l l  p a r a m e t e r s .  

Subst i tut ing (8) into (6) and expanding the funct ion obtained �9 = O(II i, y) in a T a y l o r  s e r i e s  and keeping 
s e e o n d - o r d e r t e r m s  in the unknown s m a l l  p a r a m e t e r s  II i  in the ne ighborhood  of the point  Hi = 0, we r e p r e s e n t  
(7) in the f o r m  

 'ro ' / o o  J =  o + . ~  - -  i + 0 . 5  
"[~ i=1 ~ 01]~ ]o 

__a ~ HiHy db'. 
i,:=~ \ 01-I~0Hy 10 

(9) 

Di f fe ren t ia t ing  (9) with r e s p e c t  to the p a r a m e t e r s  IIi  and taking into account  the addit ional  condi t ion 
v R = 0, we obtain the m i n i m u m  condi t ion in the f o r m  of a s y s t e m  of I + 1 l i nea r  equat ions  ( second-  and h i g h e r -  
o r d e r  t e r m s  a re  d iscarded)  

Bi,:YI i + A (avt~/aHi) = C i, i = 1, 2 . . .  I,  

I 

(OvR IOH~) H~ + vR =: 0, 
(io) 

where  A is the L a g r a n g e  p a r a m e t e r  (among the unknowns):  

\ an~an,  ] o 
R 

C~ = - -  f Oo (0o/0113 @. 
"o 

(11) 
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Fig. 2. Veloci ty prof i les  in a c i r c u l a r  tube at dif-  
f e ren t  d is tances  f r o m  the input (x/R):  a) t e s t s  [7], 
d / D  = 0.215; b) t e s t s  [8], d / D  = 0.32. 

The de r iva t ives  ( b v p / 0 I I  i) a re  evaluated by different ia t ing (6) and (8): 

O(I) Oq) Ou O(I) Ov 
- + 

cgFli Ou 81-I~ dv c?Ui 

As an i l lus t ra t ion,  le t  us p r e s en t  the de r iva t ives  of ce r ta in  components  on the r ight  side of (6). 

notat ion 

we obtain 

Y 

0 

r ~ OlOy [~ (Oul@ + Ov/Ox)], 

OCdOIl~ = f,,.~ (2u - -  a~); 02r = 2f..d,,, / ;  

aq).dorI~ = f~,~ (OulOy) + fs f'~,~ = Of,, ,dOg; 

o~e,/ori2nj = h,, :'.,: + f~,: f,;,,; 
Y 

ocdor~ = j" (f.,~ ( v -  ~1) + .f~,,~) @; 
O 

g 

o~r  .I (h,~ :~.: + t,,,:f~.~) G'; 
0 

or = OlO~/(W'.,~ + W~,dax). 

Using the 

(12) 

We p e r f o r m  computat ions by means of (12) by set t ing u =u,  v =~. We se l ec tp i ecewi se  continuous func-  
t ions as basis  functions fo r  specif ic  computat ions ,  and values of the veloci ty  u at  the control  nodes as p a r a m -  
ere r s  

:~,, (y) = 1!--.~, 

where  i is the n u m b e r  of the control node 

-~ = (y _ y ,) / (y ,_,  _ y,), Y,-, ~<~ Y ~ Y,; (13) 

N e c e s s a r y  to the conserva t ion  of (3) is 

Y 

Ax ( u -  ul) @; f .~  = - -  A--~ 

Determin ing  the coeff icients  of the m a t r i c e s  B and C f r o m  (11)-(12) by using numer i ca l  integrat ion and d i f fe r -  
entiation,  we solve the s y s t e m  (10), we calculate  the veloci ty  i n c r e m e n t  in a given sect ion 
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Fig. 3. Convective heat elimination in a 
c i r cu la r  tube at different distances f rom 
the input (x/D) : a) tes ts  [8]; d /D  = 0.32; 
b) tests  [9]; d /D  = 0.25; q is the heat flux 
in W / m  2. 

I I 

6v= Zro ,n, 
i = 1  i : 1  

and the p r e s su re s  f rom (1) and (2). Then the computation is per formed for  the next section x. Three to five 
i terations in each step in x are  required to achieve the minimum of the functional J in the initial sections of the 
channel (x/D _< 0.5), then their  number  is cut down to 1-2. 

The fini te-difference equations for  the other variables ,  the tempera ture ,  kinetic energy of the turbulent 
pulsations, and the dissociation energy of these pulsations were solved by the factor izat ion method by using 
the constants and boundary conditions for  ( k -  ~) turbulence model f rom [2]. In the initial sections k and 
were  given by the formulas  

k = 1.5 (Tu)2u~.,r 8 = 0.09 kl'~/(rlT/R), 

where 1T/R can be t reated as a cer ta in  relat ive initial scale of turbulence.  

For  Tu = 0.01-0.05 and 1T/R <_ 0.03 the computed curves sat isfactor i ly  descr ibe the experimental  data 
[7, 8] in both the hydrodynamics (Figs. 2a and b) and the heat t r ans fe r  (Fig. 3a) obtained in regimes  with low 
initial condition of turbulence.  It should be noted that if the scale of turbulence lT /R  is taken less than 0.02, 
then the change in Tu f rom ze ro  to one has pract ical ly  no effect on the computation resul ts .  If the scale of 
turbulence is increased  to 0.1, then the growth of Tu f rom zero  to 0.2 will resul t  in a significant reduction 
in the length of the reci rcula t ion zone, will shift the zone of maximal heat fluxes c lose r  to the entrance,  and 
increase  their  magnitude sharply (by 2 0 - 3 0 ~ ;  under these initial conditions a definite correspondence with 
tes ts  [9] conducted with a high initial level of turbulence is achieved (see Fig.  3b, where p r imary  tes t  data of 
[9] are presented;  the air  tempera ture  at the entrance and channel walls are 900 and 300~ respectively;  the 
velocity at the entrance is 17.5 m / s e e ,  d /D  = 0.25, D = 1 m). 

The resul ts  presented above were obtained for  five i terations in the cruise coordinate x; in this case the 
computation t ime on an ES-1033 computer  was 3 min for  3-4 pa ramete r s  and a parti t ion of the channel c ross  
sect ion into 20 layers .  An increase  in the number  of i terations (in x) to 50-100 does not a l ter  the resul t  in p r a c -  
t ice.  An analogous problem, solved by the method and p r o g r a m  in [1] uses 30-40 min on a BESM-6 computer  
and requires  up to 1000 i terat ions.  Both p rograms  yields nearby resul ts  under the same conditions at the en-  
t rance and the number  of nodes. 

N O T A T I O N  

x, y, longitudinal and t r ansver se  coordinates;  R, channel dimension; u, v, longitudinal and t ransverse  ve -  
l oc i t y  components; p, p res su re ;  II, pa rameter ;  p ,  density; #,  viscosi ty;  Tu, turbulence level. Subscripts:  i, I, 
number  and total number  of control nodes; H, initial (at the entrance); m, maximal (at the axis); 1, 2, 0, the s e c -  
tions x = x 1, x = x 2, y = 0, respect ively;  T, turbulent; and L, laminar .  
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HEAT CONDUCTIVITY OF THE ADJOINING PLATES WITH 

A PLANE HEAT SOURCE BETWEEN THEM 

I. M. Fedotkin, E. V. Verlan, 
I. D. Chebotaresku, and S. V. Evtukhovich 

UDC 536.2:643.343.320.191.8 

The heat conduction problem in a two-layered plate with a plane heat source between the layers 
is solved by the introduction of an unknown heat flux determined later from a Volterra integral 
equation of the second Idnd by the Bubnov-Galerkin method. 

The Laplace t r a n s f o r m  method has l imited appl icat ion in solving heat  conduction p r o b l e m s  in two and 
mul t i l aye red  walls  because  of the complexi ty  of executing the invers ion  of the t r a n s f o r m .  A method is known 
fo r  the reduct ion of such p rob l ems  to the solution of Vo l t e r r a  type in tegra l  equations of the second kind in the 
untmown heat  flux on the junction between the walls [1-3]. 

However ,  as is shown in [3], finite in tegral  t r a n s f o r m s  resu l t  in a solution in the fo rm of infinite poor ly  
convergent  s e r i e s  requi r ing  the applicat ion of spec ia l  methods to improve  the i r  convergence .  Moreover ,  r e p -  
resen ta t ion  of the kerne ls  of the Vo l t e r r a  in tegral  equations in the fo rm of infinite s e r i e s  does not p e r m i t  ob- 
taining the exac t  solution of the p r o b l e m  in analyt ic  f o rm .  

It is expedient  to use approx imate  methods based on the combined uti l ization of the Laplace in tegral  t r a n s -  
f o r m  mid the Ritz or  B u b n o v - G a l e r k i n  method to solve heat  conduction p r o b l e m s  in mul t i l aye red  walls .  Such 
a method is developed in [4] fo r  bodies of the s i m p l e s t  shape.  In this case  the solution of the V o l t e r r a  in tegra l  
equations re la t ive  to i n t e r l aye red  t h e r m a l  f luxes ,  and the re fo re  the solution of the p r o b l e m  is a l so  success fu l ly  
obtained in analytic form since the kernels of the integral equatio~Is consist of the simplest analytic functions 
without series. 

It is shown in [4] that numerical values of the temperature fields obtained by using approximate and exact 
solutions agree with high accuracy. 

The heat conduction problem considered in this paper is that a plane heat source, independent of the co- 
ordinates and time, acts between two infinite plates starting from a certain time. The heat transfer at the outer 
surfaces of the plates occurs according to the Newton law for a constant heat transfer coefficient. The thermo- 
physieal characteristics of the plates are independent of the temperature. The temperature of the plates at the 
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